Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Skin Pharmacol Physiol ; 35(4): 235-246, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35172307

RESUMO

INTRODUCTION: With its large surface area, skin facilitates a topical administration of active ingredients, and thus percutaneous delivery to a specific target site. Due to its high barrier function and different diffusion characteristics, skin governs the efficacy of these active ingredients and a bioavailability in the epidermal and dermal tissue. OBJECTIVE: In order to characterize the vertical and lateral movement of molecules into and inside the skin, the diffusivity of active ingredients with different physicochemical properties and their penetration ability in different dermal skin layers was investigated. METHODS: A novel lateral dermal microdialysis (MD) penetration setup was used to compare the diffusion characteristics of active ingredients into superficial and deep-implanted MD membranes in porcine skin. The corresponding membrane depth was determined via ultrasound and the active ingredients concentration via high-pressure liquid chromatography measurement. RESULTS: The depth depended penetration of superficial and deep-implanted MD membranes and the quantitative diffusivity of two active ingredients was compared. An experimental lateral MD setup was used to determine the influence of percutaneous skin penetration characteristics of an active ingredient with different lipophilic and hydrophilic characteristics. Therefore, hydrophilic caffeine and lipophilic LIP1, which have an identical molecular weight but different lipophilic characteristics, were tested for their penetration ability inside a propylene glycol and oleic acid formulation. CONCLUSION: The vertical and lateral penetration movement of caffeine was found to exceed that of LIP1 through the hydrophilic dermal environment. The findings of this study show that the lipophilicity of active ingredients influences the penetration movement and that skin enables a conical increasing lateral diffusivity and transdermal delivery.


Assuntos
Cafeína , Absorção Cutânea , Administração Cutânea , Animais , Epiderme/metabolismo , Pele/metabolismo , Suínos
2.
Skin Pharmacol Physiol ; 34(4): 203-213, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34023823

RESUMO

INTRODUCTION: The skin is a major physical barrier to the environment, and thus, percutaneous delivery of active ingredients to the dermal target site faces a unique set of hurdles. The efficacy of these active ingredients is governed by their release into the underlying epidermal and dermal tissue, especially when administered topically. OBJECTIVE: The aim of this study was to understand if different physicochemical properties influence the skin penetration of active ingredients and the depth to which they penetrate into the dermis. METHODS: A microdialysis (MD) setup was used to compare the percutaneous penetration in superficial and deep implanted MD membranes in porcine skin. The precise MD membrane depth was determined using histological sectioning paired with microscopy, ultrasound, and a novel computed tomographic approach. RESULTS: In study A, the measured depth of the superficial and deep implanted MD membranes was compared using histological sectioning, ultrasound, and computed tomography. Experimental determination of the depth up to which penetration occurs was found to be crucial to percutaneous penetration studies. In study B, the lipophilic differences of the active ingredients and its influences on the penetration was tested using hydrophilic caffeine and lipophilic LIP1 as model compounds, which have an identical molecular weight with different lipophilic characteristics. It is assumed that the lipophilic characteristics of active ingredients influence their penetration and thus governs the concentration of these molecules reaching their target site. CONCLUSION: The transdermal penetration of caffeine was found to exceed that of LIP1 through the hydrophilic environment of the dermis. Thus, the findings of this study show that the precise MD dermis localization and the physicochemical properties, such as lipophilicity, influence the penetration rate of active ingredients and lay the foundation for creating optimized transdermal delivery systems.


Assuntos
Cafeína/farmacocinética , Epiderme/metabolismo , Microdiálise/métodos , Absorção Cutânea/fisiologia , Animais , Interações Hidrofóbicas e Hidrofílicas , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...